Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Genet ; 135(8): 869-80, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27193597

RESUMO

Relative to European Americans, type 2 diabetes (T2D) is more prevalent in African Americans (AAs). Genetic variation may modulate transcript abundance in insulin-responsive tissues and contribute to risk; yet, published studies identifying expression quantitative trait loci (eQTLs) in African ancestry populations are restricted to blood cells. This study aims to develop a map of genetically regulated transcripts expressed in tissues important for glucose homeostasis in AAs, critical for identifying the genetic etiology of T2D and related traits. Quantitative measures of adipose and muscle gene expression, and genotypic data were integrated in 260 non-diabetic AAs to identify expression regulatory variants. Their roles in genetic susceptibility to T2D, and related metabolic phenotypes, were evaluated by mining GWAS datasets. eQTL analysis identified 1971 and 2078 cis-eGenes in adipose and muscle, respectively. Cis-eQTLs for 885 transcripts including top cis-eGenes CHURC1, USMG5, and ERAP2 were identified in both tissues. 62.1 % of top cis-eSNPs were within ±50 kb of transcription start sites and cis-eGenes were enriched for mitochondrial transcripts. Mining GWAS databases revealed association of cis-eSNPs for more than 50 genes with T2D (e.g. PIK3C2A, RBMS1, UFSP1), gluco-metabolic phenotypes (e.g. INPP5E, SNX17, ERAP2, FN3KRP), and obesity (e.g. POMC, CPEB4). Integration of GWAS meta-analysis data from AA cohorts revealed the most significant association for cis-eSNPs of ATP5SL and MCCC1 genes, with T2D and BMI, respectively. This study developed the first comprehensive map of adipose and muscle tissue eQTLs in AAs (publically accessible at https://mdsetaa.phs.wakehealth.edu ) and identified genetically regulated transcripts for delineating genetic causes of T2D, and related metabolic phenotypes.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/genética , Músculos/metabolismo , Obesidade/genética , Locos de Características Quantitativas/genética , Tecido Adiposo/patologia , Adolescente , Adulto , Negro ou Afro-Americano/genética , Mapeamento Cromossômico , Diabetes Mellitus Tipo 2/patologia , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Músculos/patologia , Obesidade/patologia
3.
Am J Nephrol ; 42(2): 99-106, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26343748

RESUMO

BACKGROUND: In African Americans (AAs), APOL1 G1 and G2 nephropathy risk variants are associated with non-diabetic end-stage kidney disease (ESKD) in an autosomal recessive pattern. Additional risk and protective genetic variants may be present near the APOL1 loci, since earlier age ESKD is observed in some AAs with one APOL1 renal-risk variant, and because the adjacent gene MYH9 is associated with nephropathy in populations lacking G1 and G2 variants. METHODS: Re-sequencing was performed across a ∼275 kb region encompassing the APOL1-APOL4 and MYH9 genes in 154 AA cases with non-diabetic ESKD and 38 controls without nephropathy who were heterozygous for a single APOL1 G1 or G2 risk variant. RESULTS: Sequencing identified 3,246 non-coding single nucleotide polymorphisms (SNPs), 55 coding SNPs, and 246 insertion/deletions. No new coding variations were identified. Eleven variants, including a rare APOL3 Gln58Ter null variant (rs11089781), were genotyped in a replication panel of 1,571 AA ESKD cases and 1,334 controls. After adjusting for APOL1 G1 and G2 risk effects, these variations were not significantly associated with ESKD. In subjects with <2 APOL1 G1 and/or G2 alleles (849 cases; 1,139 controls), the APOL3 null variant was nominally associated with ESKD (recessive model, OR 1.81; p = 0.026); however, analysis in 807 AA cases and 634 controls from the Family Investigation of Nephropathy and Diabetes did not replicate this association. CONCLUSION: Additional common variants in the APOL1-APOL4-MYH9 region do not contribute significantly to ESKD risk beyond the APOL1 G1 and G2 alleles.


Assuntos
Apolipoproteínas/genética , Negro ou Afro-Americano/genética , Falência Renal Crônica/genética , Lipoproteínas HDL/genética , Nefrite Lúpica/genética , Proteínas Motores Moleculares/genética , Cadeias Pesadas de Miosina/genética , Insuficiência Renal Crônica/genética , Nefropatia Associada a AIDS/genética , Adulto , Idoso , Anemia Falciforme/complicações , Apolipoproteína L1 , Apolipoproteínas L , Progressão da Doença , Feminino , Predisposição Genética para Doença , Glomerulosclerose Segmentar e Focal/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hipertensão Renal/genética , Masculino , Pessoa de Meia-Idade , Nefrite/genética , Polimorfismo de Nucleotídeo Único , Insuficiência Renal Crônica/etiologia , Análise de Sequência de DNA
4.
J Mol Genet Med ; 7: 61, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-24707315

RESUMO

This study investigated the association of copy number variants (CNVs) in type 2 diabetes (T2D) and T2D-associated end-stage renal disease (ESRD) in African Americans. Using the Affymetrix 6.0 array, >900,000 CNV probes spanning the genome were interrogated in 965 African Americans with T2D-ESRD and 1029 non-diabetic African American controls. Previously identified and novel CNVs were separately analyzed and were evaluated for insertion/deletion status and then used as predictors in a logistic regression model to test for association. One common CNV insertion on chromosome 1 was significantly associated with T2D-ESRD (p=6.17×10-5, OR=1.63) after multiple comparison correction. This CNV region encompasses the genes AMY2A and AMY2B, which encode amylase isoenzymes produced by the pancreas. Additional common and novel CNVs approaching significance with disease were also detected. These exploratory results require further replication but suggest the involvement of the AMY2A/AMY2B CNV in T2D and/or T2D-ESRD, and indicate that CNVs may contribute to susceptibility for these diseases.

5.
Plant Cell ; 24(7): 3040-59, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22829148

RESUMO

Despite the availability of thousands of transit peptide (TP) primary sequences, the structural and/or physicochemical properties that determine TP recognition by components of the chloroplast translocon are not well understood. By combining a series of in vitro and in vivo experiments, we reveal that TP recognition is determined by sequence-independent interactions and vectorial-specific recognition domains. Using both native and reversed TPs for two well-studied precursors, small subunit of ribulose-1,5-bis-phosphate carboxylase/oxygenase, and ferredoxin, we exposed these two modes of recognition. Toc34 receptor (34-kD subunit of the translocon of the outer envelope) recognition in vitro, preprotein binding in organellar, precursor binding in vivo, and the recognition of TPs by the major stromal molecular motor Hsp70 are specific for the physicochemical properties of the TP. However, translocation in organellar and in vivo demonstrates strong specificity to recognition domain organization. This organization specificity correlates with the N-terminal placement of a strong Hsp70 recognition element. These results are discussed in light of how individual translocon components sequentially interact with the precursor during binding and translocation and helps explain the apparent lack of sequence conservation in chloroplast TPs.


Assuntos
Magnoliopsida/metabolismo , Peptídeos/metabolismo , Plastídeos/metabolismo , Precursores de Proteínas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Cloroplastos/metabolismo , Biologia Computacional , Ferredoxinas/química , Ferredoxinas/metabolismo , Hidrólise , Magnoliopsida/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , /metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão , Ribulose-Bifosfato Carboxilase/química , Alinhamento de Sequência , /metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...